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The Point-Matching Solution for Magnetically
Tunable Cylindrical Cavities and
Ferrite Planar Resonators

ABDEL-MESSIAS KHILLA anp INGO WOLFF

Abstract—This paper presents an exact field theory treatment for a
cylindrical cavity containing a full-height triangular ferrite post as well as
for ferrite planar resonators of arbitrary shape. The knowledge of the
resonant frequencies of the cavity is essential for the construction of
circulators with a triangular ferrite post; those of the planar circaits are
needed for the design of microwave integrated circuits. The treatment is
general and depends neither on the location of the ferrite post inside the
cavity nor on the geometry of the planar resonator. The solution of the
wave equations in the ferrite material and in a possible surrounding air
region is written as an infinite summation of cylindrical modes. In the case
of the cavity, the individual modes are exactly matched along the internal
cylindrical metallic boundary of the cavity. The fields at the ferrite—air
interface in both cases are matched using the point-matching technique,
which leads to a finite system of homogeneous, simultaneous equations for
which the determinantal equation must be zero. An example of a cavity
with a triangular ferrite post is studied and calculated, and measured
results are compared. Furthermore, examples of application of the theory
on triangular and quadratic planar resonators are described and compared
with published experimental measurements.

1. INTRODUCTION

HE PRACTICAL application of magnetically tun-

able cavities, .especially in circulators, has generated
interest in the ferrite-filled cavity resonator problem, par-
tially ferrite-filled cavity resonator problem, and the
planar ferrite circuit problem.

A number of publications on ferrite-filled cavities is
known, of which only some can be mentioned here. Kales
and Gamo [4], [5] already very early showed that z-depen-
dent pure TE- or TM-modes cannot exist in partially
ferrite-filled cylindrical geometries. Heller and Bussey [1]-
[3] have pointed out that TM,,,, modes exist in the cylin-
drical cavity containing a longitudinally magnetized
ferrite rod and that the problem is tractable if the rod is of
a circular cross section. TM,,, modes are modes in which
the electromagnetic fields are independent of the height
coordinate of the cylinder, and / represents the number of
the full-period variations of the field components with
respect to 8, and m represents the number of half-period
variations of the field components with respect to r.
Ferrite-filled resonators of a rectangular cross section for
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the first time (to the knowledge of the authors) have been
treated by Brand [6], who gave a solution for the z-inde-
pendent modes of these resonators. Bolle [7] described a
variational approach to calculate a ferrite-filled cavity of a
rectangular cross section. A complete description of possi-
ble field solutions in ferrite-filled cavities can be found in
13]. ’

[ (])nly a few publications on ferrite planar circuits are
known. Okoshi and Miyoshi [11] introduced the concept
of planar circuits for use in microwave integrated circuits,
and Miyoshi, Yamaguchi, and Goto [10] described two
methods based on a contour-integral solution and on a
field expansion method to calculate the properties of
planar circuits on a ferrite substrate. Recently, Helszajn
[18] described the fields of modes in a demagnetized
planar circuit of a triangular geometry, using the field
solution given by Schelkunoff [12].

In this paper a method will be described which can be
used to calculate microwave cylindrical cavities with a
ferrite post of an arbitrary cross section as well as planar
circuits of arbitrary geometry on a ferrite substrate. The
method bases on the point matching of the electromag-
netic fields. The application of this method and its validity
have been described in fundamental papers by Lewin and
Nieisen [8], [9].

As a first example for the application of the developed
method, a cylindrical cavity with a full-height triangular
ferrite post placed inside the cavity and a dc magnetic
field applied normal to the plane of the cavity (Fig. 1) is
considered. Since the triangular ferrite post is assumed to
be smooth in the plane of the cavity, the scattered electric
fields will be normal to the plane of the cavity, and the
magnetic fields will be transversal. The individual modes
of the cavily are exactly matched at the internal metallic
cylindrical boundary whereas the fields of the cylindrical
modes in the ferrite post are matched to those of the
cylindrical modes outside the post at the ferrite—air inter-
face using the point-matching technique. This leads to a
finite system of homogeneous, simultaneous equations for
which the determinantal equation must be zero. Field
distributions of the lowest order modes are computed and
measured resonant frequencies are compared to the
calculated eigenvalues.
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Fig. 1. Cylindrical cavity containing a longitudinally magnetized

ferrite three-sided prism.

In two further examples, triangular and rectangular
planar circuits on a ferrite substrate are analyzed using
the same method. The fields of the planar circuits are
described by cylindrical modes; they are matched to
satisfy the magnetic wall conditions at the boundary of
the circuits using the point-matching method. Eigenvalues
and field distributions of the lowest order modes of the
circuits are calculated. Published measurements of reso-
nant frequencies corresponding to the lowest eigenvalues
are compared with the calculated frequencies.

II. THEORETICAL ANALYSIS

A. Cylindrical Cavity Containing a Longitudinally Mag-
netized Ferrite Three-Sided Prism

The cylindrical cavity may be considered as divided
into two regions, the ferrite three-sided prism and the
surrounding air region as shown in Fig. 1. The electric
field E, in the ferrite (region 1) satisfies the homogeneous
Helmbholtz equation in cylindrical coordinates.
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u and k are the diagonal and off-diagonal permeability
tensor elements in the xy plane, and ¢, is the relative
permittivity of the ferrite material.

The solution of (1) takes the following form:
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From the Maxwell’s equations, the azimuthal and radial
magnetic-field components, when p ; >0, are
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Similarly, fields outside the ferrite (region II) are of the
form
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The prime denotes differentiation with respect to the
argument, and a,, b,, and ¢, are the unknown field ampli-
tudes which can be obtained from the continuity condi-
tions of the tangential field components at the ferrite—air
interface and at r= R.

The boundary conditions for the E, component at r= R

are

E,(R, )| =0,
From (5) we get

0< ¢ <2m. (8)

_ Jn(kOR)
= Y, (k,R) ™

On the boundary between the air (surrounding the ferrite)
and the ferrite, the fields must be matched. The boundary
depends on the geometry of the ferrite, and only the
ferrite three-sided prism is considered here.

The continuity conditions for the electric field compo-
nent E,(r,¢) and the tangential magnetic field component
H,,, (r.¢) can be applied at any point m (r=r, ) along the
ferrite—air interface using (2)—(7) and (9) to give
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for the tangential magnetic field. ¢,,, is the angle between
the side of the ferrite triangle and H,(r,,,9,). ¢, 18
positive when it takes the same direction as ¢, and
negative, otherwise (Fig. 2).

The truncation of the infinite series in the equation
systems (10) and (11) amounts to taking into account only
a finite number of cylindrical modes, on the assumption
that the neglected modes have much smaller amplitudes.

Consider N cylindrical modes and Q matching points at
each side of the triangular ferrite post such that

IN+1=30. (12)

Equations (10) and (11) then can be written in the form of
quadratic matrices:
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Fig. 2. Schematic representation of the cylindrical cavity with a trian-
gular ferrite post and symbols used in the point-matching equations.

with i= - N,—-N+1,---,N—1,N and /=1,2,3,---,3Q.
Equations (13) and (14) can be combined as

Z:b=0 (15)
where the matrix Z is given by
Z=A4"'“B—-A17'B1. (16)
From the nontrivial condition of (15), we have
det (Z)=0. (17)

The matrix Z is of the order (2N + 1), with N being the
number of cylindrical modes taken into account. Equation
(17) gives the resonant frequencies of the cavity.

B. Ferrite Planar Resonators

A ferrite planar circuit is an electrical circuit whose
thickness in one direction is much less than one wave-
length and whose dimension in the orthogonal directions
is comparable to the wavelength [11]. It consists of an
arbitrarily shaped thin conductor on a ferrite substrate
which is fully metallized on its backside with a dc mag-
netic field perpendicular to the substrate plane. The thick-
ness of the planar circuit is d. Because the spacing d is
much smaller than the wavelength and since the ferrite
substrate is assumed to be homogeneous and linear, only
the field components E,, H,, and H, with no variation
along the dc bias field direction are considered. (It is
assumed that the periphery of the ferrite planar circuit is
open circuited where the coupling ports are absent.) In
other words, the tangential magnetic field is assumed to
be zero over the whole periphery in the case of the ferrite
planar resonators. A simple correction for the fringing
magnetic field effect is to enlarge the periphery outwards
by the amount of 0.447 d-k (k=0.2) [10] in advance of the
analysis. If a correction of higher accuracy is wanted, the
method presented in [16] can be used.

For the z-independent waves in this structure, as in the
case of the cylindrical cavity containing a ferrite post, the
electric field E, and the magnetic fields H, and H, take
the same form as in (2)—(4), respectively.

The boundary condition of the tangential magnetic
field at the periphery can be applied at any point m
(r=r,, $=¢,,) along the periphery of the ferrite planar
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Fig. 3. Schematic representation of a ferrite planar resonator and
symbols used in the point-matching equations.

resonator (g >0, Fig. 3) to give

S 4, sin (60,) { i)+ = )}
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(18)

Consider N cylindrical modes and Q matching points at
the periphery of the resonator such that
AN+1=0. (19)

Equation (18) then can be written in the form of a
quadratic matrix equation
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with i=—N,—N+1,---,N—L,N, and I=1,2,3,--,0.
From the nontrivial condition of (20), we have

det C=0. 1)

This equation gives the resonant frequencies of the reso-
nator.

Principally, other than the cylindrical functions, e.g., a
complete function system in rectangular or triangular
coordinate systems [12] can be used to find a resonance
condition equivalent to (20). The cylindrical expansion
functions are chosen here because of the simple formula-
tion of the field equations in the ferrite material in a
cylindrical coordinate system.

III. TESTING OF THE ANALYSIS

In the following example, the ferrimagnetic material
TT1-109 is assumed to be lossless. As an example of the
computer analysis described so far, the resonant frequen-
cies of a cylindrical cavity with a cylindrical ferrite rod
(R=1.85 cm, r,=0.3 cm) were computed first to check the
computation accuracy.
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Fig. 4. Magnetic tuning characteristics of a cylindrical cavity with a
triangular ferrite post.

It should be noted that det Z has been found to be
predominantly real or imaginary depending on the num-
ber of cylindrical modes taken into account, and that a
change of the sign of det Z does not always lead to a
nontrivial condition of (15); it may lead to a singularity. A
Newton-Raphson method has been employed to select
the nontrivial conditions of (15), i.e., det Z=0.

The case of 15 matching points on the ferrite—air inter-
face are considered. Accordingly, N =7 cylindrical modes
are retained. Two cases are considered, below the ferri-
magnetic resonance (Hy=80 A/cm) and above the
ferrimagnetic resonance (H,=4000 A /cm). By comparing
the calculated eigenvalues for these two cases (H,=:80
A/cm, Hy=4000 A/cm) with the theoretical ones, which
should be given by the roots of

Jn(kOR )

Y,(k,R) Y, (kor;) }

, k n J,(koR)
{Jn(kfri)+ N kfri Jn(kfrt')} {Jn(kori) Yn(koR)
. Y,,(kor,.)} =0, n=0,x1+2,-.. (22)

it is found that the computation error was within 1.0
percent for the two cases taking into account 7 cylindrical
modes.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Cylindrical Cavity Containing an Axially Magnetized
Ferrite Three-Sided Prism

In this example, 11 matching points on each side of the
triangular ferrite are considered. Accordingly, 17 cylindri-
cal modes (N = 16) at the ferrite—air interface are retained.
The characteristics of cylindrical cavities with a three-
sided prism ferrite, of which nothing has been reported,
were studied. Fig. 4 shows the magnetic tuning character-
istics of the cavity. The calculated resonant frequencies
shown in solid curves are found to be in fairly good
agreement with the measured values, below as well as
above the ferrimagnetic resonance.
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Fig. 5. Relative electric field intensities E, across the cylindrical cavity
with a triangular ferrite post. (a) Hy=80 A/cm, F=4.127 GHz. (b)
H,=160 A/cm, F=8.819 GHz. (c) Hy=160 A/cm, F=9.524 GHz.
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Fig. 6. Magnetic tuning characteristics of a triangular ferrite planar
resonator; —— measured values given by {10}; ---- values computed
from this theory.

In the experiment, a longitudinally equilateral triangu-
lar ferrite post with a radius of the inscribed circle of 0.25
cm of the ferrimagnetic material TT1-109 was centered in
a cylindrical cavity of the radius R=1.85 cm. Fig. 5 (a),
(b), and (c) shows the computed instantaneous relative
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Fig. 7. Relative electric field intensities of a triangular ferrite planar
resonator. (a) Hy=1035 A/cm, F=4.02 GHz. (b) Hy=1035 A/cm,
F=5.85 GHz. (c) Hy=1035 A/cm, F=8.52 GHz.
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Fig. 8. Magnetic tuning characteristics of a square ferrite planar reso-
nator; measured values given by [10]; ---- values computed from
this theory.

electric field intensities |E,| across the cavity for three
resonant frequencies. These figures indicate that the elec-
tric field attains almost a null value at the internal
metallic boundary of the cavity as was required in this
case.

For the lowest resonant frequency, the electric field
attains a maximum value at the center of the cavity and
behaves more or less like the Bessel function of zero
order. It corresponds to the lowest order mode TMy,,. For
the first two higher resonant frequencies, the electric field
at the center of the cavity does not indicate a null as in
the case of the TM ;o mode of the cylindrical ferrite post
{17]. This means that the zeroth-order space harmonic still
has a relatively large amplitude value, and consequently,
it affects these resonances. According to the field distribu-
tions, it is easy to classify the field modes of the three
resonant frequencies similarly to the case of the cavity
with a cylindrical ferrite post. The resonant frequencies in
the case of triangular ferrite posts are realized with the
interaction of many space harmonics, whereas any reso-
nant frequency in the case of a cylindrical ferrite post can
be described in terms of the corresponding rotating space
harmonic.

B. Ferrite Planar Resonators

Point-matching techniques are used to study the char-
acteristics of triangular and square ferrite planar resona-
tors. The case of 15 matching points on the periphery of
each resonator is considered. Accordingly, 8 cylindrical
modes are retained. Fig. 6 shows the magnetic tuning
characteristics of the triangular ferrite planar resonator
with the same physical dimensions and using the same
ferrimagnetic material as given by [10] (for comparison
with their published experimental measurements). The
calculated values, based on the technique adopted in this
paper, are found to be in quite good agreement with the
published experimental measurement, below as well as
above the ferrimagnetic resonance.

Fig. 7 (2), (b), and (c) show the computed instantaneous
relative electric field intensities across the resonator for
three resonant frequencies for the same dc magnetic field
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Fig. 9. Relative electric field intensities of a square ferrite planar
resonator. (a) H,=1035 A/cm, F=4.55 GHz. (b) Hy=1035 A/cm,
F=17.52 GHz. (c) Hy=1035 A/cm, F=7.82 GHz.

(Hy=1035 A/cm). As Fig. 7 shows, the field intensity of
the third resonance does not vanish in the center of the
cavity; therefore, it can be concluded that the zeroth-
order space harmonic of the field expansion functions
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(zeroth-order Bessel function) affects the field distribution
of this resonance.

In the case of the square ferrite planar resonator, the
magnetic tuning characteristics and the instantaneous rel-
ative electric field intensities across the resonator are
shown in Figs. 8 and 9 (a), (b), and (c), respectively. It is
found from the figures that almost the same resonant
characteristics as obtained for a triangular resonator re-
sult.

V. CoNCLUSION

The analysis given can be applied to cylindrical cavities
with arbitrarily shaped, longitudinally magnetized ferrite
posts as well as to arbitrarily shaped, ferrite planar reso-
nators or circuits. The numerical results obtained for all
the examples are found to be in agreement with the
experimental results and the previously published experi-
mental ones. The point-matching technique will be useful
in the design and analysis of ferrite planar circuits as well
as magnetically tunable cavities.
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Theory of Infrared and Optical
Frequency Amplification in
Metal—Barrier —Metal Diodes

DAVID M. DRURY anp T. KORYU ISHII, SENIOR MEMBER, IEEE

Abstract—The near-infrared and optical frequency power gain of a
metal-barrier-metal (MBM) point contact diode exhibiting a negative
differential resistance region in its current—voltage characteristic is derived
as a function of frequency. The diode is treated as a traveling-wave
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amplifier. The starting point for the analysis is the known electric and
magnetic field distribution of the surface waves that propagate in the oxide
barrier layer between the diode whisker and substrate, assuming no
tunneling current is present. Then the differential tunneling conductance is
introduced, and the electric and magnetic field distribution is used to find
the propagation constant of the equivalent transmission line formed by the
diode structure. It is shown that if the differential tunneling conductance is
negative, gain can result. It is shown theoretically that the diode amplifier
can provide approximately a 6-dB gain from the CO, laser frequency to
the He—Ne laser frequency.
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