
592 IEEE TRANSACTIONS ON MICROWAVE THSORY AND ~CHNIQUES, VOL. WIT-27, NO. 6, JUNE ] 979

The Point-Matching Solution for Magnetically
Tunable Cylindrical Cavities and

Ferrite Planar Resonators

ABDEL-MESSIAS KHILLA AND INGO WOLFF

Abstract-Tlds paper presents an exact field theory treatment for a

cyfimfricat cavity containing a fulf-height triangular ferrite post as well w

for ferrite planar resonators of arbitrary shape. The knowledge of the

resonant frequencies of the cavity is essential for the construction of

circrdators with a triaagutar ferrite post; those of the planar circolts are

needed for the design of microwave integrated circuits. The rreatment is

general and depends neither on the location of the ferrite post inside the

cavity nor on the geometry of the planar rewnator. The solution of the

wave equatfons in the ferrite material and in a possible surrounding air

region is written as an timite summation of cylfndricat modes. In tire case

of the cavity, the irrdividnal modes are exactly matched atong the internal

cytindricat metaflfc boundary of the cavity. The fields at the ferrite-air

interface in both cases are matched using the point-matching tecbniquq

which leads to a finite system of homogeneous, simultaneous eqnations for

which the deterndnantaf equation most be zero. An example of a cavity

with a triaogufar ferrite post is stodfed and cafcutate@ and measured

remtts are compared. Furthermore, examples of appficatfon of the theory

on triangular and quadratic planar resonators are described and compared

with pubtfsbed experimental meaanrements.

I. INTRODUCTION

T HE PRACTICAL application of magnetically tun-

able cavities, especially in circulators, has generated

interest in the ferrite-filled cavity resonator problem, par-

tially ferrite-filled cavity resonator problem, and the

planar ferrite circuit problem.

A number of publications on ferrite-filled cavities is

known, of which only some can be mentioned here. Kales

and Gamo [4], [5] already very early showed that z-depen-

dent pure TE- or TM-modes cannot exist in partially

ferrite-filled cylindrical geometries. Heller and Bussey [ l]–

[3] have pointed out that TMlnO modes exist in the cylin-

drical cavity containing a longitudinally magnetized

ferrite rod and that the problem is tractable if the rod is of

a circular cross section. TMl~O modes are modes in which

the electromagnetic fields are independent of the height

coordinate of the cylinder, and 1 represents the number of
the full-period variations of the field components with

respect to L9,and m represents the number of half-period

variations of the field components with respect to r.

Ferrite-filled resonators of a rectangular cross section for
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the first time (to the knowledge of the authors) have been

treated by Brand [6], who gave a solution for the z-inde-

pendent modes of these resonators. Belle [7] described a

variational approach to calculate a ferrite-filled cavity of a

rectangular cross section. A complete description of possi-

ble field solutions in ferrite-filled cavities can be found in
[13].

Only a few publications on ferrite planar circuits are

known. Okoshi and Miyoshi [11] introduced the concept

of planar circuits for use in microwave integrated circuits,

and Miyoshi, Yamaguchi, and Goto [10] described two

methods based on a contour-integral solution and on a

field expansion method to calculate the properties of

planar circuits on a ferrite substrate. Recently, Helszajn

[18] described the fields of modes in a demagnetized

planar circuit of a triangular geometry, using the field

solution given by Schelkunoff [12].

In this paper a method will be described which can be

used to calculate microwave cylindrical cavities with a

ferrite post of an arbitrary cross section as well as planar

circuits of arbitrary geometry on a ferrite substrate. The

method bases on the point matching of the electromag-

netic fields. The application of this method and its validity

have been described in fundamental papers by Lewin and

Nielsen [8], [9].

As a first example for the application of the developed

method, a cylindrical cavity with a full-height triangular

ferrite post placed inside the cavity and a dc magnetic

field applied normal to the plane of the cavity (Fig. 1) is

considered. Since the triangular ferrite post is assumed to

be smooth in the plane of the cavity, the scattered electric

fields will be normal to the plane of the cavity, and the

magnetic fields will be transversal. The individual modes

of the cavity are exactly matched at the internal metallic

cylindrical boundary whereas the fields of the cylindrical
modes in the ferrite post are matched to those of the

cylindrical modes outside the post at the ferrite-air inter-

face using the point-matching technique. This leads to a

finite system of homogeneous, simultaneous equations for

which the determinantal equation must be zero. Field

distributions of the lowest order modes are computed and

measured resonant frequencies are compared to the

calculated eigenvalues.
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Fig. 1. Cylindrical cavity containing a longitudinally magnetized
ferrite three-sided prism.

In two further examples, triangular and rectangular

planar circuits on a ferrite substrate are analyzed using

the same method. The fields of the planar circuits are

described by cylindrical modes; they are matched to

satisfy the magnetic wall conditions at the boundary of

the circuits using the point-matching method. Eigenvalues

and field distributions of the lowest order modes of the

circuits are calculated. Published measurements of reso-

nant frequencies corresponding to the lowest eigenvalues

are compared with the calculated frequencies.

IL THEORETKAL ANALYSIS

A. Cylindrical Cavity Containing a Longitudinally Mag-

netized Ferrite Three-Sided Prism

The cylindrical cavity may be considered as divided

into two regions, the ferrite three-sided prism and the

surrounding air region as shown in Fig. 1. The electric

field E= in the ferrite (region 1) satisfies the homogeneous

Helmholtz equation in cylindrical coordinates.

where

.EZ=O (1)

p and k are the diagonal and off-diagonal permeability
tensor elements in the xy plane, and Cf, is the relative

permittivity of the ferrite material.

The solution of (1) takes the following form:

From the Maxwell’s equations, the azimuthal and radial

magnetic-field components, when Peff , >0, are

(/[)

Similarly, fields outside the ferrite (region II) are of the

form

E=(r, @)= ~ { b~.l~(kor) + C. Y~(kor)}e-@’ (5)
~.—~

H@(r, ~) = –jYo ~ { b~y~(kor) + C. Y~(kor) } e ‘@@ (15)
~.—~

(7)

and

k;= a2pocW

The prime denotes differentiation with respect to tlhe

argument, and a., b., and c. are the unknown field ampli-

tudes which can be obtained from the continuity condi-

tions of the tangential field components at the ferrite-air

interface and at r = R.

The boundary conditions for

are

the E= component at r= R

0<+<2%’. (8)

From (5) we get

.lE(koR) b

c“ = – Y.(kOR) ‘“
(9)

On the boundary between the air (surrounding the ferrite)

and the ferrite, the fields must be matched. The boundary

depends on the geometry of the ferrite, and only the

ferrite three-sided prism is considered here.

The continuity conditions for the electric field compo-

nent E=(r, +) and the tangential magnetic field component

Ht,.,(r+ ~) can be applied at anY Point m (r= r~) along fhe
ferrite–air interface using (2)–(7) and (9) to give

( .7~(koR )
+ ~ b. Y~(kor~)

1
– J~(korn) e-jn~m =0 (10)

~=—.m Y~(koR )

for the E= component and
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[(~ a~.~ sin (r),~). (kr);J;(%) + &n f m~.—~ 1

{

kn
‘j cos (ol~) J:(k~r~) + –

}]
— J~(k~r~) e ‘j”+”

P kfr~

[
+ ~=~m b.” Yo” sin (%J &

{

Jn(koR )
‘.(kOr~) Yn(koR)

Om

– J.(&~)
)

–~ Cos(%!)

{

. Y~(kOr~)
J~(koR )

}]

–J~(kor~) .e-Jn% =~
Yn(koR )

(11)

for the tangential magnetic field. +IM is the angle between

the side of the ferrite triangle and II@(r~, @~). +1~ is

positive when it takes the same direction as @~ and

negative, otherwise (Fig. 2).

The truncation of the infinite series in the equation

systems (10) and (11) amounts to taking into account only

a finite number of cylindrical modes, on the assumption

that the neglected modes have much smaller amplitudes.

Consider N cylindrical modes and Q matching points at

each side of the triangular ferrite post such that

2N+1=3Q. (12)

Equations (10) and (11) then can be written in the form of

quadratic matrices:

A-a+ B.b=O (13)

A1.a+Bl.b=O (14)

where

A=[A/i], All = Ji(kfr,)e ‘Y+l

[

Ji(koR)
B= [ Bli], B*i = X(korl)

1

– Ji(kori) .e ‘~’@’
~.(koR )

Al=[Alli],
[{

A Ili = Yf. sin (+ll). ~ J;(k~r,)

+
} { Pk;r,

~Ji(kfr/) ‘~ Cos (%/). Ji’(kfrl) + K A
f[

)]

- Ji(kfrl) e ‘~i+’

BI=[B1,,],
[

B hi= Yo. sin (+ll). ;.
{

~(korl)
01

Ji(koR )
– Ji(kor,)

) {
–j cos (@ll) ~(korl)

J;(kOR)

~.(koR) ~(koR)

}1
– Jj(korl) e ‘Jio’

a=[a] b=[bi]

Fig. 2. Schematic representation of the cylindrical cavity with a trian-
gular ferrite post and symbols used in the point-matching equations,

with i=– N,– N+l,. ..,l, iVandl= l,2,3,3,3Q. ,3Q.

Equations (13) and (14) can be combined as

Z.b = O (15)

where the matrix Z is given by

Z= A-*”B– AI-l.B1. (16)

From the nontrivial condition of (15), we have

det (Z) =0. (17)

The matrix Z is of the order (2N + I), with N being the

number of cylindrical modes taken into account. Equation

(17) gives the resonant frequencies of the cavity.

B. Ferrite Planar Resonators

A ferrite planar circuit is an electrical circuit whose

thickness in one direction is much less than one wave-

length and whose dimension in the orthogonal directions

is comparable to the wavelength [11]. It consists of an

arbitrarily shaped thin conductor on a ferrite substrate

which is fully metallized on its backside with a de mag-

netic field perpendicular to the substrate plane. The thick-

ness of the planar circuit is d. Because the spacing d is

much smaller than the wavelength and since the ferrite

substrate is assumed to be homogeneous and linear, only

the field components E=, H+, and H, with no variation

along the dc bias field direction are considered. (It is

assumed that the periphery of the ferrite planar circuit is

open circuited where the coupling ports are absent.) In

other words, the tangential magnetic field is assumed to

be zero over the whole periphery in the case of the ferrite

planar resonators. A simple correction for the fringing

magnetic field effect is to enlarge the periphery outwards

by the amount of 0.447 d.k (k= 0.2) [10] in advance of the

analysis. If a correction of higher accuracy is wanted, the

method presented in [16] can be used.

For the z-independent waves in this structure, as in the

case of the cylindrical cavity containing a ferrite post, the

electric field E= and the magnetic fields H+ and H, take

the same form as in (2)–(4), respectively.
The boundary condition of the tangential magnetic

field at the periphery can be applied at any point m

(r= r~, @= +~) along the periphery of the ferrite planar
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Fig. 3. Schematic representation of a ferrite planar resonator and

symbols used in the point-matching equations.

resonator ( Peff, >0, Fig. 3) to give

[{
j a..Yf sin (@J. :J;(kfrm) + + Jn(kfrm)

n.—w fm 1
( kn

–j cos (@lm) .l~(kfr~) + – — Jn(kfrm)

1]

. ~ –W% = o-

P kfrm

(18)

Consider N cylindrical modes and Q matching points at

the periphery of the resonator such that

2N+1=Q. (19)

Equation (18) then can be written in the form of a

quadratic matrix equation

C.a=O (20)

where

c=[qi],
[{

Cli = Yf” sin (@n)” ( )): ‘i’(kfrl) + * ‘i ‘frl

{

–j cos (Q,,). .l;(kfrl) + L ‘Ji(kfrl)
)]

.~–m
p kfr[

with i=– N,– N+l,. ..,l, N,N, and 1=1,2,3,. ... Q.

From the nontrivial condition of (20), we have

det C =0. (21)

This equation gives the resonant frequencies of the reso-

nator.

Principally, other than the cylindrical functions, e.g., a

complete function system in rectangular or triangular

coordinate systems [12] can be used to find a resonance

condition equivalent to (20). The cylindrical expansion
functions are chosen here because of the simple formula-

tion of the field equations in the ferrite material in a

cylindrical coordinate system.

III. TESTING OF THE ANALYSIS

In the following example, the ferromagnetic material

TT1- 109 is assumed to be lossless. As an example of the

computer analysis described so far, the resonant frequen-

cies of a cylindrical cavity with a cylindrical ferrite rod

(R= 1.85 cm, ri = 0.3 cm) were computed first to check the

computation accuracy.
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Fig. 4. Magnetic tuning characteristics of a cylindrical cavity with a

triangular ferrite post.

It should be noted that det Z has been found to be

predominantly real or imaginary depending on the num-

ber of cylindrical modes taken into account, and that a

change of the sign of det Z does not always lead to a

nontrivial condition of (15); it may lead to a singularity. A

Newton–Raphson method has been employed to select

the nontrivial conditions of (15), i.e., det Z= O.

The case of 15 matching points on the ferrite–air inter-

face are considered. Accordingly, N= 7 cylindrical modes

are retained. Two cases are considered, below the ferro-

magnetic resonance (HO =80 A/cm) and above the

ferromagnetic resonance (HO =4000 A/cm). By comparing

the calculated eigenvalues for these two cases (HO= 80

A/cm, HO= 4000 A/cm) with the theoretical ones, which

should be given by the roots of

&J(kr){J~(kor)-:&;
{ J~(koR )

J;(kfri) + ~ & Jn(kfri )) {J~(kori)- yn(koR}—

).Yn(kori) = O, n=O, *l, +2,... (22)

it is found that the computation error was within 1.0

percent for the two cases taking into account 7 cylindrical

modes.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Cylindrical Cavity Containing an Axial/v Magnetized

Ferrite Three-Sided Prism

In this example, 11 matching points on each side of the

triangular ferrite are considered. Accordingly, 17 cylindri-

cal modes (N= 16) at the ferrite–air interface are retained.

The characteristics of cylindrical cavities with a three-

sided prism ferrite, of which nothing has been reported,
were studied. Fig. 4 shows the magnetic tuning character-

istics of the cavity. The calculated resonant frequencies

shown in solid curves are found to be in fairly good

agreement with the measured values, below as well as

above the ferromagnetic resonance.
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Fig. 5. Relative electric field intensities E= across the cylindrical cavity
with a triangular ferrite post. (a) HO= 80 A/cm, F= 4.127 GHz. (b)
HO= 160 A/cm, F= 8.819 GHz. (c) HO= 160 A/cm, F= 9.524 GHz.
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Fig. 6. Magnetic tuning characteristics of a triangular ferrite planar
resonator; — measured values given by [10]; ---- values computed
from this theory.

In the experiment, a longitudinally equilateral triangu-

lar ferrite post with a radius of the inscribed circle of 0.25

cm of the ferromagnetic material TT 1-109 was centered in

a cylindrical cavity of the radius R = 1.85 cm. Fig. 5 (a),

(b), and (c) shows the computed instantaneous relative

‘-’d
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....
‘. \

-... J/‘“\.
(b)

(c)

Fig. 7. Relative electric field intensities of a triangular ferrite planar

resonator. (a) HO= 1035 A/cm, F==4.02 GI-Lz. (b) HO= 1035 A/cm,

F= 5.85 GHz. (c) HO= 1035 A/cm, F=8.52 GHz.
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Fig. 8. Magnetic’ tuning characteristics of a square ferrite planar reso-
nator; — measured values given by [10]; ---- values computed from
this theory.

electric field intensities IE=[ across the cavity for three

resonant frequencies. These figures indicate that the elec-

tric field attains almost a null value at the internal

metallic boundary of the cavity as was required in this

case.

For the lowest resonant frequency, the electric field

attains a maximum value at the center of the cavity and

behaves more or less like the Bessel function of zero

order. It corresponds to the lowest order mode TMOIO For

the first two higher resonant frequencies, the electric field

at the center of the cavity does not indicate a null as in

the case of the TM ~ 110mode of the cylindrical ferrite post
[17]. This means that the zeroth-order space harmonic still

has a relatively large amplitude value, and consequently,

it affects these resonances. According to the field distribu-

tions, it is easy to classify the field modes of the three

resonant frequencies similarly to the case of the cavity

with a cylindrical ferrite post. The resonant frequencies in

the case of triangular ferrite posts are realized with the

interaction of many space harmonics, whereas any reso-

nant frequency in the case of a cylindrical ferrite post can

be described in terms of the corresponding rotating space

harmonic.

B. Ferrite Planar Resonators

Point-matching techniques are used to study the char-

acteristics of triangular and square ferrite planar resona-

tors. The case of 15 matching points on the periphery of

each resonator is considered. Accordingly, 8 cylindrical

modes are retained. Fig. 6 shows the magnetic tuning

characteristics of the triangular ferrite planar resonator

with the same physical dimensions and using the same

ferromagnetic material as given by [10] (fo~ comparison

with their published experimental measurements). The

calculated values, based on the technique adopted in this
paper, are found to be in quite good agreement with the

published experimental measurement, below as well as

above the ferromagnetic resonance.
Fig. 7 (a), (b), and (c) show the computed instantaneous

relative electric field intensities across the resonator for

three resonant frequencies for the same dc magnetic field
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Fig. 9. Relative electric field intensities of a square ferrite Dlanar
~esonator. (a) HO= 1035 A/cm, F= 4.55 GHz. ~) HO= 1035 A/c!m,

F= 7.52 GHz. (c) HO= 1035 A/cm, F=7.82 GHz.

(H. = 1035 A/cm). As Fig. 7 shows, the field intensity of

the third resonance does not vanish in the center of the

cavity; therefore, it can be concluded that the zeroth-

order space harmonic of the field expansion functions
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(zeroth-order Bessel

of this resonance.

function) affects the field distribution

In the case of the square ferrite planar resonator, the

magnetic tuning characteristics and the instantaneous rel-

ative electric field intensities across the resonator are

shown in Figs. 8 and 9 (a), (b), and (c), respectively. It is

found from the figures that almost the same resonant

characteristics as obtained for a triangular resonator re-

sult.

V. CONCLUSION

The analysis given can be applied to cylindrical cavities

with arbitrarily shaped, longitudinally magnetized ferrite

posts as well as to arbitrarily shaped, ferrite planar reso-

nators or circuits. The numerical results obtained for all

the examples are found to be in agreement with the

experimental results and the previously published experi-

mental ones. The point-matching technique will be useful

in the design and analysis of ferrite planar circuits as well

as magnetically tunable cavities.
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Theory of Infrared and Optical
Frequency Amplification in

Metal –Barrier –Metal Diodes

DAVID M. DRURY AND T. KORYU ISHII, SENfOR MEMBER, IEEE

Abstract—The near-infrared and opticaf frequency power gain of a

metal-barrier-metaf (MBM) point contact diode exhibiting a negative

differential r&.4anee regfon in its current-voltage characteristic is derived

as a function of frequency. Tire dfode is treated as a travefing-wave
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amplifier. The starting point for the anafysis is the known electric and

magnetic field distribution of the surface waves that propagate in the OX&

barrier layer between the diode whisker and snhstratq mmnniag no

tunneffng current is prexent. Then the differential tonnefiag conductance is

intrnduce@ and the electric and magnetic field distribution is used to ~md

the propagation constant of the equivalent traasnria40n fine formed by tha

diode structure. It is shown that if the differential tnarrefing conduetaaee is

negative, gain can reaoft. It is shown tbeoretieaffy that the diode ampfMer

~ provide approximately a 6-dB gain from the C02 kwer frequency tO
the He-Ne laser frequency.

0018-9480/79/0600-0598$00.75 01979 IEEE


